First-ever picture of a black hole

this image is the first direct visual evidence of a black hole. This particularly massive specimen is at the centre of the massive galaxy Messier 87 and was recorded with the Event Horizon Telescope (EHT), a network of eight ground-based radio telescopes distributed around the globe. © EHT Collaboration

Scientists observe supermassive black hole in infant universe

A team of astronomers, including two from MIT, has detected the most distant supermassive black hole ever observed. The black hole sits in the center of an ultrabright quasar, the light of which was emitted just 690 million years after the Big Bang. That light has taken about 13 billion years to reach us — a span of time that is nearly equal to the age of the universe._MIT

Neutron star merger confirms decades of predictions by Princeton researchers

On Aug. 17, the Laser Interferometry Gravitational-Wave Observatory (LIGO) detected the fifth fingerprint of a massive disturbance in spacetime since LIGO began operations in September 2015. Unlike the first four sets of ripples, which reflected collisions between two black holes, the shape of these spacetime distortions suggested a collision between two neutron stars. _Princeton University

Gravitational waves from a binary black hole merger observed by LIGO and Virgo

The LIGO Scientific Collaboration and the Virgo collaboration report the first joint detection of gravitational waves with both the LIGO and Virgo detectors. This is the fourth announced detection of a binary black hole system and the first significant gravitational-wave signal recorded by the Virgo detector, and highlights the scientific potential of a three-detector network of gravitational-wave detectors._ LIGO Caltech

Why Black Holes Collide ?

Just months after their discovery, gravitational waves coming from the mergers of black holes are shaking up astrophysics. _ By Natalie Wolchover, Quanta Magazine

Gravitational waves

One hundred years after Albert Einstein predicted the existence of gravitational waves, scientists have finally spotted these elusive ripples in space-time. In a highly anticipated announcement, physicists with the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO) revealed on 11 February that their twin detectors have heard the gravitational ‘ringing’ produced by the collision of two black holes about 400 megaparsecs (1.3 billion light-years) from Earth._nature

The quantum source of space-time

Many physicists believe that entanglement is the essence of quantum weirdness — and some now suspect that it may also be the essence of space-time geometry._Ron Cowen/Nature

ALMA Precisely Measures Black Hole Mass

In a new proof-of-concept observation, astronomers using the Atacama Large Millimeter/submillimeter Array (ALMA) have measured the mass of the supermassive black hole at the center of NGC 1097 — a barred spiral galaxy located approximately 45 million light-years away in the direction of the constellation Fornax.

The Quantum Fabric of Space-Time

Έχει περάσει ένας αιώνας από τότε που ο Albert Einstein με τις εξισώσεις του για το βαρυτικό πεδίο, έφερε την επανάσταση στον τρόπο με τον οποίο αντιλαμβανόμαστε τον χώρο, τον χρόνο και την βαρύτητα. Με την ευρύτερα γνωστή ως γενική σχετικότητα, ο Einstein όρισε την βαρύτητα ως καμπύλη στην γεωμετρία του χωρόχρονου, ανα-τρέποντας την κλασσική θεώρηση του Ισαάκ Νεύτωνα και ορθώς προβλέποντας, αφε-νός την ύπαρξη μελανών οπών και αφετέρου την ικανότητά τους να κάμπτουν το φώς. Ωστόσο, η φύση του χωρόχρονου, ουδέποτε έπαψε να αποτελεί μυστήριο: Από που προέρχεται αυτή η δομή; Πως μοιάζει η βαρύτητα στο υπο-ατομικό βασίλειο των κβάντων;

Black holes don’t erase information, scientists say

Αυτό που επί σειρά ετών υποστηρίζουν οι επιστήμονες είναι ότι οι μαύρες τρύπες αποτελούν κρύπτη υψίστης ασφαλείας για πληροφορίες που εισέρχονται σε αυτές, οι οποίες στην συνέχεια εξατμίζονται χωρίς να αφήνουν πίσω οποιοδήποτε ίχνος του παρελθόντος τους. Ωστόσο, νέα δεδομένα καταδεικνύουν ότι η προοπτική αυτή ενδέχεται να είναι λανθασμένη.